3.8.10 \(\int \frac {(a d e+(c d^2+a e^2) x+c d e x^2)^{5/2}}{(d+e x)^{5/2} (f+g x)^6} \, dx\) [710]

3.8.10.1 Optimal result
3.8.10.2 Mathematica [A] (verified)
3.8.10.3 Rubi [A] (verified)
3.8.10.4 Maple [B] (verified)
3.8.10.5 Fricas [B] (verification not implemented)
3.8.10.6 Sympy [F(-1)]
3.8.10.7 Maxima [F]
3.8.10.8 Giac [B] (verification not implemented)
3.8.10.9 Mupad [F(-1)]

3.8.10.1 Optimal result

Integrand size = 46, antiderivative size = 393 \[ \int \frac {\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}}{(d+e x)^{5/2} (f+g x)^6} \, dx=-\frac {c^2 d^2 \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{16 g^3 \sqrt {d+e x} (f+g x)^3}+\frac {c^3 d^3 \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{64 g^3 (c d f-a e g) \sqrt {d+e x} (f+g x)^2}+\frac {3 c^4 d^4 \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{128 g^3 (c d f-a e g)^2 \sqrt {d+e x} (f+g x)}-\frac {c d \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{8 g^2 (d+e x)^{3/2} (f+g x)^4}-\frac {\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}}{5 g (d+e x)^{5/2} (f+g x)^5}+\frac {3 c^5 d^5 \arctan \left (\frac {\sqrt {g} \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{\sqrt {c d f-a e g} \sqrt {d+e x}}\right )}{128 g^{7/2} (c d f-a e g)^{5/2}} \]

output
-1/8*c*d*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2)/g^2/(e*x+d)^(3/2)/(g*x+f) 
^4-1/5*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(5/2)/g/(e*x+d)^(5/2)/(g*x+f)^5+3 
/128*c^5*d^5*arctan(g^(1/2)*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)/(-a*e* 
g+c*d*f)^(1/2)/(e*x+d)^(1/2))/g^(7/2)/(-a*e*g+c*d*f)^(5/2)-1/16*c^2*d^2*(a 
*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)/g^3/(g*x+f)^3/(e*x+d)^(1/2)+1/64*c^3 
*d^3*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)/g^3/(-a*e*g+c*d*f)/(g*x+f)^2/ 
(e*x+d)^(1/2)+3/128*c^4*d^4*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)/g^3/(- 
a*e*g+c*d*f)^2/(g*x+f)/(e*x+d)^(1/2)
 
3.8.10.2 Mathematica [A] (verified)

Time = 1.69 (sec) , antiderivative size = 301, normalized size of antiderivative = 0.77 \[ \int \frac {\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}}{(d+e x)^{5/2} (f+g x)^6} \, dx=\frac {c^5 d^5 ((a e+c d x) (d+e x))^{5/2} \left (\frac {\sqrt {g} \left (-128 a^4 e^4 g^4+16 a^3 c d e^3 g^3 (11 f-21 g x)-8 a^2 c^2 d^2 e^2 g^2 \left (f^2-64 f g x+31 g^2 x^2\right )-2 a c^3 d^3 e g \left (5 f^3+23 f^2 g x-233 f g^2 x^2+5 g^3 x^3\right )+c^4 d^4 \left (-15 f^4-70 f^3 g x-128 f^2 g^2 x^2+70 f g^3 x^3+15 g^4 x^4\right )\right )}{c^5 d^5 (c d f-a e g)^2 (a e+c d x)^2 (f+g x)^5}+\frac {15 \arctan \left (\frac {\sqrt {g} \sqrt {a e+c d x}}{\sqrt {c d f-a e g}}\right )}{(c d f-a e g)^{5/2} (a e+c d x)^{5/2}}\right )}{640 g^{7/2} (d+e x)^{5/2}} \]

input
Integrate[(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(5/2)/((d + e*x)^(5/2)*( 
f + g*x)^6),x]
 
output
(c^5*d^5*((a*e + c*d*x)*(d + e*x))^(5/2)*((Sqrt[g]*(-128*a^4*e^4*g^4 + 16* 
a^3*c*d*e^3*g^3*(11*f - 21*g*x) - 8*a^2*c^2*d^2*e^2*g^2*(f^2 - 64*f*g*x + 
31*g^2*x^2) - 2*a*c^3*d^3*e*g*(5*f^3 + 23*f^2*g*x - 233*f*g^2*x^2 + 5*g^3* 
x^3) + c^4*d^4*(-15*f^4 - 70*f^3*g*x - 128*f^2*g^2*x^2 + 70*f*g^3*x^3 + 15 
*g^4*x^4)))/(c^5*d^5*(c*d*f - a*e*g)^2*(a*e + c*d*x)^2*(f + g*x)^5) + (15* 
ArcTan[(Sqrt[g]*Sqrt[a*e + c*d*x])/Sqrt[c*d*f - a*e*g]])/((c*d*f - a*e*g)^ 
(5/2)*(a*e + c*d*x)^(5/2))))/(640*g^(7/2)*(d + e*x)^(5/2))
 
3.8.10.3 Rubi [A] (verified)

Time = 0.82 (sec) , antiderivative size = 406, normalized size of antiderivative = 1.03, number of steps used = 8, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.152, Rules used = {1249, 1249, 1249, 1254, 1254, 1255, 218}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{5/2}}{(d+e x)^{5/2} (f+g x)^6} \, dx\)

\(\Big \downarrow \) 1249

\(\displaystyle \frac {c d \int \frac {\left (c d e x^2+\left (c d^2+a e^2\right ) x+a d e\right )^{3/2}}{(d+e x)^{3/2} (f+g x)^5}dx}{2 g}-\frac {\left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{5/2}}{5 g (d+e x)^{5/2} (f+g x)^5}\)

\(\Big \downarrow \) 1249

\(\displaystyle \frac {c d \left (\frac {3 c d \int \frac {\sqrt {c d e x^2+\left (c d^2+a e^2\right ) x+a d e}}{\sqrt {d+e x} (f+g x)^4}dx}{8 g}-\frac {\left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{3/2}}{4 g (d+e x)^{3/2} (f+g x)^4}\right )}{2 g}-\frac {\left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{5/2}}{5 g (d+e x)^{5/2} (f+g x)^5}\)

\(\Big \downarrow \) 1249

\(\displaystyle \frac {c d \left (\frac {3 c d \left (\frac {c d \int \frac {\sqrt {d+e x}}{(f+g x)^3 \sqrt {c d e x^2+\left (c d^2+a e^2\right ) x+a d e}}dx}{6 g}-\frac {\sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{3 g \sqrt {d+e x} (f+g x)^3}\right )}{8 g}-\frac {\left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{3/2}}{4 g (d+e x)^{3/2} (f+g x)^4}\right )}{2 g}-\frac {\left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{5/2}}{5 g (d+e x)^{5/2} (f+g x)^5}\)

\(\Big \downarrow \) 1254

\(\displaystyle \frac {c d \left (\frac {3 c d \left (\frac {c d \left (\frac {3 c d \int \frac {\sqrt {d+e x}}{(f+g x)^2 \sqrt {c d e x^2+\left (c d^2+a e^2\right ) x+a d e}}dx}{4 (c d f-a e g)}+\frac {\sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{2 \sqrt {d+e x} (f+g x)^2 (c d f-a e g)}\right )}{6 g}-\frac {\sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{3 g \sqrt {d+e x} (f+g x)^3}\right )}{8 g}-\frac {\left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{3/2}}{4 g (d+e x)^{3/2} (f+g x)^4}\right )}{2 g}-\frac {\left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{5/2}}{5 g (d+e x)^{5/2} (f+g x)^5}\)

\(\Big \downarrow \) 1254

\(\displaystyle \frac {c d \left (\frac {3 c d \left (\frac {c d \left (\frac {3 c d \left (\frac {c d \int \frac {\sqrt {d+e x}}{(f+g x) \sqrt {c d e x^2+\left (c d^2+a e^2\right ) x+a d e}}dx}{2 (c d f-a e g)}+\frac {\sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{\sqrt {d+e x} (f+g x) (c d f-a e g)}\right )}{4 (c d f-a e g)}+\frac {\sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{2 \sqrt {d+e x} (f+g x)^2 (c d f-a e g)}\right )}{6 g}-\frac {\sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{3 g \sqrt {d+e x} (f+g x)^3}\right )}{8 g}-\frac {\left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{3/2}}{4 g (d+e x)^{3/2} (f+g x)^4}\right )}{2 g}-\frac {\left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{5/2}}{5 g (d+e x)^{5/2} (f+g x)^5}\)

\(\Big \downarrow \) 1255

\(\displaystyle \frac {c d \left (\frac {3 c d \left (\frac {c d \left (\frac {3 c d \left (\frac {c d e^2 \int \frac {1}{(c d f-a e g) e^2+\frac {g \left (c d e x^2+\left (c d^2+a e^2\right ) x+a d e\right ) e^2}{d+e x}}d\frac {\sqrt {c d e x^2+\left (c d^2+a e^2\right ) x+a d e}}{\sqrt {d+e x}}}{c d f-a e g}+\frac {\sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{\sqrt {d+e x} (f+g x) (c d f-a e g)}\right )}{4 (c d f-a e g)}+\frac {\sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{2 \sqrt {d+e x} (f+g x)^2 (c d f-a e g)}\right )}{6 g}-\frac {\sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{3 g \sqrt {d+e x} (f+g x)^3}\right )}{8 g}-\frac {\left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{3/2}}{4 g (d+e x)^{3/2} (f+g x)^4}\right )}{2 g}-\frac {\left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{5/2}}{5 g (d+e x)^{5/2} (f+g x)^5}\)

\(\Big \downarrow \) 218

\(\displaystyle \frac {c d \left (\frac {3 c d \left (\frac {c d \left (\frac {3 c d \left (\frac {c d \arctan \left (\frac {\sqrt {g} \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{\sqrt {d+e x} \sqrt {c d f-a e g}}\right )}{\sqrt {g} (c d f-a e g)^{3/2}}+\frac {\sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{\sqrt {d+e x} (f+g x) (c d f-a e g)}\right )}{4 (c d f-a e g)}+\frac {\sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{2 \sqrt {d+e x} (f+g x)^2 (c d f-a e g)}\right )}{6 g}-\frac {\sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{3 g \sqrt {d+e x} (f+g x)^3}\right )}{8 g}-\frac {\left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{3/2}}{4 g (d+e x)^{3/2} (f+g x)^4}\right )}{2 g}-\frac {\left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{5/2}}{5 g (d+e x)^{5/2} (f+g x)^5}\)

input
Int[(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(5/2)/((d + e*x)^(5/2)*(f + g* 
x)^6),x]
 
output
-1/5*(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(5/2)/(g*(d + e*x)^(5/2)*(f + 
 g*x)^5) + (c*d*(-1/4*(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(3/2)/(g*(d 
+ e*x)^(3/2)*(f + g*x)^4) + (3*c*d*(-1/3*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + 
c*d*e*x^2]/(g*Sqrt[d + e*x]*(f + g*x)^3) + (c*d*(Sqrt[a*d*e + (c*d^2 + a*e 
^2)*x + c*d*e*x^2]/(2*(c*d*f - a*e*g)*Sqrt[d + e*x]*(f + g*x)^2) + (3*c*d* 
(Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2]/((c*d*f - a*e*g)*Sqrt[d + e*x 
]*(f + g*x)) + (c*d*ArcTan[(Sqrt[g]*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e 
*x^2])/(Sqrt[c*d*f - a*e*g]*Sqrt[d + e*x])])/(Sqrt[g]*(c*d*f - a*e*g)^(3/2 
))))/(4*(c*d*f - a*e*g))))/(6*g)))/(8*g)))/(2*g)
 

3.8.10.3.1 Defintions of rubi rules used

rule 218
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/R 
t[a/b, 2]], x] /; FreeQ[{a, b}, x] && PosQ[a/b]
 

rule 1249
Int[((d_) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))^(n_)*((a_.) + (b_.)*(x_) 
+ (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(d + e*x)^m*(f + g*x)^(n + 1)*((a + 
 b*x + c*x^2)^p/(g*(n + 1))), x] + Simp[c*(m/(e*g*(n + 1)))   Int[(d + e*x) 
^(m + 1)*(f + g*x)^(n + 1)*(a + b*x + c*x^2)^(p - 1), x], x] /; FreeQ[{a, b 
, c, d, e, f, g}, x] && EqQ[c*d^2 - b*d*e + a*e^2, 0] && EqQ[m + p, 0] && G 
tQ[p, 0] && LtQ[n, -1] &&  !(IntegerQ[n + p] && LeQ[n + p + 2, 0])
 

rule 1254
Int[((d_) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))^(n_)*((a_.) + (b_.)*(x_) 
+ (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(-e^2)*(d + e*x)^(m - 1)*(f + g*x)^ 
(n + 1)*((a + b*x + c*x^2)^(p + 1)/((n + 1)*(c*e*f + c*d*g - b*e*g))), x] - 
 Simp[c*e*((m - n - 2)/((n + 1)*(c*e*f + c*d*g - b*e*g)))   Int[(d + e*x)^m 
*(f + g*x)^(n + 1)*(a + b*x + c*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, f, 
g, m, p}, x] && EqQ[c*d^2 - b*d*e + a*e^2, 0] && EqQ[m + p, 0] && LtQ[n, -1 
] && IntegerQ[2*p]
 

rule 1255
Int[Sqrt[(d_) + (e_.)*(x_)]/(((f_.) + (g_.)*(x_))*Sqrt[(a_.) + (b_.)*(x_) + 
 (c_.)*(x_)^2]), x_Symbol] :> Simp[2*e^2   Subst[Int[1/(c*(e*f + d*g) - b*e 
*g + e^2*g*x^2), x], x, Sqrt[a + b*x + c*x^2]/Sqrt[d + e*x]], x] /; FreeQ[{ 
a, b, c, d, e, f, g}, x] && EqQ[c*d^2 - b*d*e + a*e^2, 0]
 
3.8.10.4 Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(913\) vs. \(2(349)=698\).

Time = 0.57 (sec) , antiderivative size = 914, normalized size of antiderivative = 2.33

method result size
default \(-\frac {\sqrt {\left (c d x +a e \right ) \left (e x +d \right )}\, \left (15 \,\operatorname {arctanh}\left (\frac {g \sqrt {c d x +a e}}{\sqrt {\left (a e g -c d f \right ) g}}\right ) c^{5} d^{5} g^{5} x^{5}+75 \,\operatorname {arctanh}\left (\frac {g \sqrt {c d x +a e}}{\sqrt {\left (a e g -c d f \right ) g}}\right ) c^{5} d^{5} f \,g^{4} x^{4}+150 \,\operatorname {arctanh}\left (\frac {g \sqrt {c d x +a e}}{\sqrt {\left (a e g -c d f \right ) g}}\right ) c^{5} d^{5} f^{2} g^{3} x^{3}+150 \,\operatorname {arctanh}\left (\frac {g \sqrt {c d x +a e}}{\sqrt {\left (a e g -c d f \right ) g}}\right ) c^{5} d^{5} f^{3} g^{2} x^{2}-15 c^{4} d^{4} g^{4} x^{4} \sqrt {c d x +a e}\, \sqrt {\left (a e g -c d f \right ) g}+75 \,\operatorname {arctanh}\left (\frac {g \sqrt {c d x +a e}}{\sqrt {\left (a e g -c d f \right ) g}}\right ) c^{5} d^{5} f^{4} g x +10 a \,c^{3} d^{3} e \,g^{4} x^{3} \sqrt {c d x +a e}\, \sqrt {\left (a e g -c d f \right ) g}-70 c^{4} d^{4} f \,g^{3} x^{3} \sqrt {c d x +a e}\, \sqrt {\left (a e g -c d f \right ) g}+15 \,\operatorname {arctanh}\left (\frac {g \sqrt {c d x +a e}}{\sqrt {\left (a e g -c d f \right ) g}}\right ) c^{5} d^{5} f^{5}+248 a^{2} c^{2} d^{2} e^{2} g^{4} x^{2} \sqrt {c d x +a e}\, \sqrt {\left (a e g -c d f \right ) g}-466 a \,c^{3} d^{3} e f \,g^{3} x^{2} \sqrt {c d x +a e}\, \sqrt {\left (a e g -c d f \right ) g}+128 c^{4} d^{4} f^{2} g^{2} x^{2} \sqrt {c d x +a e}\, \sqrt {\left (a e g -c d f \right ) g}+336 a^{3} c d \,e^{3} g^{4} x \sqrt {c d x +a e}\, \sqrt {\left (a e g -c d f \right ) g}-512 a^{2} c^{2} d^{2} e^{2} f \,g^{3} x \sqrt {c d x +a e}\, \sqrt {\left (a e g -c d f \right ) g}+46 a \,c^{3} d^{3} e \,f^{2} g^{2} x \sqrt {c d x +a e}\, \sqrt {\left (a e g -c d f \right ) g}+70 c^{4} d^{4} f^{3} g x \sqrt {c d x +a e}\, \sqrt {\left (a e g -c d f \right ) g}+128 \sqrt {c d x +a e}\, \sqrt {\left (a e g -c d f \right ) g}\, a^{4} e^{4} g^{4}-176 \sqrt {c d x +a e}\, \sqrt {\left (a e g -c d f \right ) g}\, a^{3} c d \,e^{3} f \,g^{3}+8 \sqrt {c d x +a e}\, \sqrt {\left (a e g -c d f \right ) g}\, a^{2} c^{2} d^{2} e^{2} f^{2} g^{2}+10 \sqrt {c d x +a e}\, \sqrt {\left (a e g -c d f \right ) g}\, a \,c^{3} d^{3} e \,f^{3} g +15 \sqrt {c d x +a e}\, \sqrt {\left (a e g -c d f \right ) g}\, c^{4} d^{4} f^{4}\right )}{640 \sqrt {e x +d}\, \sqrt {\left (a e g -c d f \right ) g}\, \left (g x +f \right )^{5} g^{3} \left (a e g -c d f \right )^{2} \sqrt {c d x +a e}}\) \(914\)

input
int((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(5/2)/(e*x+d)^(5/2)/(g*x+f)^6,x,meth 
od=_RETURNVERBOSE)
 
output
-1/640*((c*d*x+a*e)*(e*x+d))^(1/2)*(15*arctanh(g*(c*d*x+a*e)^(1/2)/((a*e*g 
-c*d*f)*g)^(1/2))*c^5*d^5*g^5*x^5+75*arctanh(g*(c*d*x+a*e)^(1/2)/((a*e*g-c 
*d*f)*g)^(1/2))*c^5*d^5*f*g^4*x^4+150*arctanh(g*(c*d*x+a*e)^(1/2)/((a*e*g- 
c*d*f)*g)^(1/2))*c^5*d^5*f^2*g^3*x^3+150*arctanh(g*(c*d*x+a*e)^(1/2)/((a*e 
*g-c*d*f)*g)^(1/2))*c^5*d^5*f^3*g^2*x^2-15*c^4*d^4*g^4*x^4*(c*d*x+a*e)^(1/ 
2)*((a*e*g-c*d*f)*g)^(1/2)+75*arctanh(g*(c*d*x+a*e)^(1/2)/((a*e*g-c*d*f)*g 
)^(1/2))*c^5*d^5*f^4*g*x+10*a*c^3*d^3*e*g^4*x^3*(c*d*x+a*e)^(1/2)*((a*e*g- 
c*d*f)*g)^(1/2)-70*c^4*d^4*f*g^3*x^3*(c*d*x+a*e)^(1/2)*((a*e*g-c*d*f)*g)^( 
1/2)+15*arctanh(g*(c*d*x+a*e)^(1/2)/((a*e*g-c*d*f)*g)^(1/2))*c^5*d^5*f^5+2 
48*a^2*c^2*d^2*e^2*g^4*x^2*(c*d*x+a*e)^(1/2)*((a*e*g-c*d*f)*g)^(1/2)-466*a 
*c^3*d^3*e*f*g^3*x^2*(c*d*x+a*e)^(1/2)*((a*e*g-c*d*f)*g)^(1/2)+128*c^4*d^4 
*f^2*g^2*x^2*(c*d*x+a*e)^(1/2)*((a*e*g-c*d*f)*g)^(1/2)+336*a^3*c*d*e^3*g^4 
*x*(c*d*x+a*e)^(1/2)*((a*e*g-c*d*f)*g)^(1/2)-512*a^2*c^2*d^2*e^2*f*g^3*x*( 
c*d*x+a*e)^(1/2)*((a*e*g-c*d*f)*g)^(1/2)+46*a*c^3*d^3*e*f^2*g^2*x*(c*d*x+a 
*e)^(1/2)*((a*e*g-c*d*f)*g)^(1/2)+70*c^4*d^4*f^3*g*x*(c*d*x+a*e)^(1/2)*((a 
*e*g-c*d*f)*g)^(1/2)+128*(c*d*x+a*e)^(1/2)*((a*e*g-c*d*f)*g)^(1/2)*a^4*e^4 
*g^4-176*(c*d*x+a*e)^(1/2)*((a*e*g-c*d*f)*g)^(1/2)*a^3*c*d*e^3*f*g^3+8*(c* 
d*x+a*e)^(1/2)*((a*e*g-c*d*f)*g)^(1/2)*a^2*c^2*d^2*e^2*f^2*g^2+10*(c*d*x+a 
*e)^(1/2)*((a*e*g-c*d*f)*g)^(1/2)*a*c^3*d^3*e*f^3*g+15*(c*d*x+a*e)^(1/2)*( 
(a*e*g-c*d*f)*g)^(1/2)*c^4*d^4*f^4)/(e*x+d)^(1/2)/((a*e*g-c*d*f)*g)^(1/...
 
3.8.10.5 Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 1354 vs. \(2 (349) = 698\).

Time = 1.37 (sec) , antiderivative size = 2750, normalized size of antiderivative = 7.00 \[ \int \frac {\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}}{(d+e x)^{5/2} (f+g x)^6} \, dx=\text {Too large to display} \]

input
integrate((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(5/2)/(e*x+d)^(5/2)/(g*x+f)^6, 
x, algorithm="fricas")
 
output
[-1/1280*(15*(c^5*d^5*e*g^5*x^6 + c^5*d^6*f^5 + (5*c^5*d^5*e*f*g^4 + c^5*d 
^6*g^5)*x^5 + 5*(2*c^5*d^5*e*f^2*g^3 + c^5*d^6*f*g^4)*x^4 + 10*(c^5*d^5*e* 
f^3*g^2 + c^5*d^6*f^2*g^3)*x^3 + 5*(c^5*d^5*e*f^4*g + 2*c^5*d^6*f^3*g^2)*x 
^2 + (c^5*d^5*e*f^5 + 5*c^5*d^6*f^4*g)*x)*sqrt(-c*d*f*g + a*e*g^2)*log(-(c 
*d*e*g*x^2 - c*d^2*f + 2*a*d*e*g - (c*d*e*f - (c*d^2 + 2*a*e^2)*g)*x - 2*s 
qrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*sqrt(-c*d*f*g + a*e*g^2)*sqrt(e 
*x + d))/(e*g*x^2 + d*f + (e*f + d*g)*x)) + 2*(15*c^5*d^5*f^5*g - 5*a*c^4* 
d^4*e*f^4*g^2 - 2*a^2*c^3*d^3*e^2*f^3*g^3 - 184*a^3*c^2*d^2*e^3*f^2*g^4 + 
304*a^4*c*d*e^4*f*g^5 - 128*a^5*e^5*g^6 - 15*(c^5*d^5*f*g^5 - a*c^4*d^4*e* 
g^6)*x^4 - 10*(7*c^5*d^5*f^2*g^4 - 8*a*c^4*d^4*e*f*g^5 + a^2*c^3*d^3*e^2*g 
^6)*x^3 + 2*(64*c^5*d^5*f^3*g^3 - 297*a*c^4*d^4*e*f^2*g^4 + 357*a^2*c^3*d^ 
3*e^2*f*g^5 - 124*a^3*c^2*d^2*e^3*g^6)*x^2 + 2*(35*c^5*d^5*f^4*g^2 - 12*a* 
c^4*d^4*e*f^3*g^3 - 279*a^2*c^3*d^3*e^2*f^2*g^4 + 424*a^3*c^2*d^2*e^3*f*g^ 
5 - 168*a^4*c*d*e^4*g^6)*x)*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*sq 
rt(e*x + d))/(c^3*d^4*f^8*g^4 - 3*a*c^2*d^3*e*f^7*g^5 + 3*a^2*c*d^2*e^2*f^ 
6*g^6 - a^3*d*e^3*f^5*g^7 + (c^3*d^3*e*f^3*g^9 - 3*a*c^2*d^2*e^2*f^2*g^10 
+ 3*a^2*c*d*e^3*f*g^11 - a^3*e^4*g^12)*x^6 + (5*c^3*d^3*e*f^4*g^8 - a^3*d* 
e^3*g^12 + (c^3*d^4 - 15*a*c^2*d^2*e^2)*f^3*g^9 - 3*(a*c^2*d^3*e - 5*a^2*c 
*d*e^3)*f^2*g^10 + (3*a^2*c*d^2*e^2 - 5*a^3*e^4)*f*g^11)*x^5 + 5*(2*c^3*d^ 
3*e*f^5*g^7 - a^3*d*e^3*f*g^11 + (c^3*d^4 - 6*a*c^2*d^2*e^2)*f^4*g^8 - ...
 
3.8.10.6 Sympy [F(-1)]

Timed out. \[ \int \frac {\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}}{(d+e x)^{5/2} (f+g x)^6} \, dx=\text {Timed out} \]

input
integrate((a*d*e+(a*e**2+c*d**2)*x+c*d*e*x**2)**(5/2)/(e*x+d)**(5/2)/(g*x+ 
f)**6,x)
 
output
Timed out
 
3.8.10.7 Maxima [F]

\[ \int \frac {\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}}{(d+e x)^{5/2} (f+g x)^6} \, dx=\int { \frac {{\left (c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x\right )}^{\frac {5}{2}}}{{\left (e x + d\right )}^{\frac {5}{2}} {\left (g x + f\right )}^{6}} \,d x } \]

input
integrate((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(5/2)/(e*x+d)^(5/2)/(g*x+f)^6, 
x, algorithm="maxima")
 
output
integrate((c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)^(5/2)/((e*x + d)^(5/2)*( 
g*x + f)^6), x)
 
3.8.10.8 Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 2407 vs. \(2 (349) = 698\).

Time = 2.83 (sec) , antiderivative size = 2407, normalized size of antiderivative = 6.12 \[ \int \frac {\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}}{(d+e x)^{5/2} (f+g x)^6} \, dx=\text {Too large to display} \]

input
integrate((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(5/2)/(e*x+d)^(5/2)/(g*x+f)^6, 
x, algorithm="giac")
 
output
3/128*c^5*d^5*abs(e)*arctan(sqrt((e*x + d)*c*d*e - c*d^2*e + a*e^3)*g/(sqr 
t(c*d*f*g - a*e*g^2)*e))/((c^2*d^2*f^2*g^3 - 2*a*c*d*e*f*g^4 + a^2*e^2*g^5 
)*sqrt(c*d*f*g - a*e*g^2)*e) - 1/640*(15*c^5*d^5*e^5*f^5*abs(e)*arctan(sqr 
t(-c*d^2*e + a*e^3)*g/(sqrt(c*d*f*g - a*e*g^2)*e)) - 75*c^5*d^6*e^4*f^4*g* 
abs(e)*arctan(sqrt(-c*d^2*e + a*e^3)*g/(sqrt(c*d*f*g - a*e*g^2)*e)) + 150* 
c^5*d^7*e^3*f^3*g^2*abs(e)*arctan(sqrt(-c*d^2*e + a*e^3)*g/(sqrt(c*d*f*g - 
 a*e*g^2)*e)) - 150*c^5*d^8*e^2*f^2*g^3*abs(e)*arctan(sqrt(-c*d^2*e + a*e^ 
3)*g/(sqrt(c*d*f*g - a*e*g^2)*e)) + 75*c^5*d^9*e*f*g^4*abs(e)*arctan(sqrt( 
-c*d^2*e + a*e^3)*g/(sqrt(c*d*f*g - a*e*g^2)*e)) - 15*c^5*d^10*g^5*abs(e)* 
arctan(sqrt(-c*d^2*e + a*e^3)*g/(sqrt(c*d*f*g - a*e*g^2)*e)) - 15*sqrt(-c* 
d^2*e + a*e^3)*sqrt(c*d*f*g - a*e*g^2)*c^4*d^4*e^4*f^4*abs(e) + 70*sqrt(-c 
*d^2*e + a*e^3)*sqrt(c*d*f*g - a*e*g^2)*c^4*d^5*e^3*f^3*g*abs(e) - 10*sqrt 
(-c*d^2*e + a*e^3)*sqrt(c*d*f*g - a*e*g^2)*a*c^3*d^3*e^5*f^3*g*abs(e) - 12 
8*sqrt(-c*d^2*e + a*e^3)*sqrt(c*d*f*g - a*e*g^2)*c^4*d^6*e^2*f^2*g^2*abs(e 
) + 46*sqrt(-c*d^2*e + a*e^3)*sqrt(c*d*f*g - a*e*g^2)*a*c^3*d^4*e^4*f^2*g^ 
2*abs(e) - 8*sqrt(-c*d^2*e + a*e^3)*sqrt(c*d*f*g - a*e*g^2)*a^2*c^2*d^2*e^ 
6*f^2*g^2*abs(e) - 70*sqrt(-c*d^2*e + a*e^3)*sqrt(c*d*f*g - a*e*g^2)*c^4*d 
^7*e*f*g^3*abs(e) + 466*sqrt(-c*d^2*e + a*e^3)*sqrt(c*d*f*g - a*e*g^2)*a*c 
^3*d^5*e^3*f*g^3*abs(e) - 512*sqrt(-c*d^2*e + a*e^3)*sqrt(c*d*f*g - a*e*g^ 
2)*a^2*c^2*d^3*e^5*f*g^3*abs(e) + 176*sqrt(-c*d^2*e + a*e^3)*sqrt(c*d*f...
 
3.8.10.9 Mupad [F(-1)]

Timed out. \[ \int \frac {\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}}{(d+e x)^{5/2} (f+g x)^6} \, dx=\int \frac {{\left (c\,d\,e\,x^2+\left (c\,d^2+a\,e^2\right )\,x+a\,d\,e\right )}^{5/2}}{{\left (f+g\,x\right )}^6\,{\left (d+e\,x\right )}^{5/2}} \,d x \]

input
int((x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^(5/2)/((f + g*x)^6*(d + e*x)^( 
5/2)),x)
 
output
int((x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^(5/2)/((f + g*x)^6*(d + e*x)^( 
5/2)), x)